Connect with us

Energy

West Tibetan Glaciers Collapse

Published

on

glacier by edith schreurs via flickr

The collapse of the two glaciers, near Lake Aru in Western Tibet, was virtually unprecedented.

The first glacier collapsed on 17 July 2016, and the Journal of Glaciology publishes the first scientific account of this cryospheric disaster in which nine local yak herders were killed. Eyewitnesses reported that the episode lasted only four to five minutes. More than 70 million cubic metres of ice tumbled down a mountain valley, spreading over a distance of 6 kilometres onto the lowland below.

Scientists from ITPCAS, the Institute of Tibetan Plateau Research of the Chinese Academy of Sciences, rushed to the site of the collapse to begin the task of trying to understand it. After the first question, “How did it happen?” the question uppermost in their minds was “Could other glaciers suffer the same fate?” They did not have to wait long for their answer.

On 21 September 2016 the neighbouring glacier to the southeast collapsed. Information about this second event remains sketchy, but although there were no deaths the volume of ice released was even larger than in the first collapse.

The two collapses are virtually unprecedented. Much smaller icefalls have been studied in the European Alps, but they were from glaciers much steeper than the Aru glaciers. These Aru collapses resemble that of the Kolka Glacier in the Russian Caucasus in September 2002, but that was a slide of mixed ice and rock which evolved into a mudflow. Moreover, Kolka is a rare example of a surging glacier, while the Aru glaciers have no known history of surging. In any case, surging is a stately phenomenon. A surge is an accelerated flow of ice from the upper to the lower part of a glacier, usually lasting months to years and usually resulting in an advance of the glacier snout by a few hundred to a few thousand metres.

In contrast, the Aru collapses lasted only minutes. They were avalanches in which large parts of the glaciers simply disintegrated. The first collapse is estimated to have reduced the average thickness of the glacier by more than 20 metres, from an original thickness of perhaps 50 to 60 metres. Most of the world’s glaciers are thinning, but a rate of four metres a year is rarely recorded. Four metres a minute is half a million times faster than that.

How did the collapses happen?

The lead author of the scientific paper, Lide Tian of ITPCAS, said “The Aru glaciers are in the remotest part of Tibet, and there are no nearby weather stations. But the record from a more distant station suggests that unusually heavy snowfalls in the months before the collapses must have played a role. Large amounts of resulting meltwater may have found their way to the glacier bed, or to some surface of structural weakness within the ice. There the meltwater would have reduced frictional drag and triggered the collapses.” In addition to the role of weather, the possibility that geothermal heat also played a role in the disaster is still under investigation. A hot spring has been found along a fault near Lake Meima, next to Lake Aru.

Could other glaciers suffer the same fate?

Lonnie Thompson of the Byrd Polar and Climate Research Center at The Ohio State University, who also contributed to the scientific paper, said “It is all too easy to blame global warming for events such as these, but we know that the temperature at the nearest weather station has risen by 1.5 °C in the past fifty years. The warming may have raised the previously frozen glacier beds to the melting point. If our thinking is along the right lines, there is no obvious reason why other frozen-bed glaciers in the area, or elsewhere for that matter, should not collapse. As of today, unfortunately, we have no ability at all to predict such disasters.”

Perry Bartelt of the Institute for Snow and Avalanche Research in Davos, Switzerland, is one of a number of glaciologists who are hard at work on the search for understanding. He said “We can already mimic these collapses quite well in our computer models. We make guesses, and the guesses that do better at reproducing what happened are guides to deeper understanding. Inside the computer, the Aru glaciers do not collapse unless we allow carefully for the role of temperature and in particular for the presence of meltwater. There does not have to be all that much meltwater to start with. However, once the avalanche has begun, a lot of the kinetic energy of the tumbling blocks of ice gets converted to heat, or in other words to more and more lubricating water and more and more tumbling blocks. The avalanche fuels itself.”

Economy

New Zealand to Switch to Fully Renewable Energy by 2035

Published

on

renewable energy policy
Shutterstock Licensed Photo - By Eviart / https://www.shutterstock.com/g/adrian825

New Zealand’s prime minister-elect Jacinda Ardern is already taking steps towards reducing the country’s carbon footprint. She signed a coalition deal with NZ First in October, aiming to generate 100% of the country’s energy from renewable sources by 2035.

New Zealand is already one of the greenest countries in the world, sourcing over 80% of its energy for its 4.7 million people from renewable resources like hydroelectric, geothermal and wind. The majority of its electricity comes from hydro-power, which generated 60% of the country’s energy in 2016. Last winter, renewable generation peaked at 93%.

Now, Ardern is taking on the challenge of eliminating New Zealand’s remaining use of fossil fuels. One of the biggest obstacles will be filling in the gap left by hydropower sources during dry conditions. When lake levels drop, the country relies on gas and coal to provide energy. Eliminating fossil fuels will require finding an alternative source to avoid spikes in energy costs during droughts.

Business NZ’s executive director John Carnegie told Bloomberg he believes Ardern needs to balance her goals with affordability, stating, “It’s completely appropriate to have a focus on reducing carbon emissions, but there needs to be an open and transparent public conversation about the policies and how they are delivered.”

The coalition deal outlined a few steps towards achieving this, including investing more in solar, which currently only provides 0.1% of the country’s energy. Ardern’s plans also include switching the electricity grid to renewable energy, investing more funds into rail transport, and switching all government vehicles to green fuel within a decade.

Zero net emissions by 2050

Beyond powering the country’s electricity grid with 100% green energy, Ardern also wants to reach zero net emissions by 2050. This ambitious goal is very much in line with her focus on climate change throughout the course of her campaign. Environmental issues were one of her top priorities from the start, which increased her appeal with young voters and helped her become one of the youngest world leaders at only 37.

Reaching zero net emissions would require overcoming challenging issues like eliminating fossil fuels in vehicles. Ardern hasn’t outlined a plan for reaching this goal, but has suggested creating an independent commission to aid in the transition to a lower carbon economy.

She also set a goal of doubling the number of trees the country plants per year to 100 million, a goal she says is “absolutely achievable” using land that is marginal for farming animals.

Greenpeace New Zealand climate and energy campaigner Amanda Larsson believes that phasing out fossil fuels should be a priority for the new prime minister. She says that in order to reach zero net emissions, Ardern “must prioritize closing down coal, putting a moratorium on new fossil fuel plants, building more wind infrastructure, and opening the playing field for household and community solar.”

A worldwide shift to renewable energy

Addressing climate change is becoming more of a priority around the world and many governments are assessing how they can reduce their reliance on fossil fuels and switch to environmentally-friendly energy sources. Sustainable energy is becoming an increasingly profitable industry, giving companies more of an incentive to invest.

Ardern isn’t alone in her climate concerns, as other prominent world leaders like Justin Trudeau and Emmanuel Macron have made renewable energy a focus of their campaigns. She isn’t the first to set ambitious goals, either. Sweden and Norway share New Zealand’s goal of net zero emissions by 2045 and 2030, respectively.

Scotland already sources more than half of its electricity from renewable sources and aims to fully transition by 2020, while France announced plans in September to stop fossil fuel production by 2040. This would make it the first country to do so, and the first to end the sale of gasoline and diesel vehicles.

Many parts of the world still rely heavily on coal, but if these countries are successful in phasing out fossil fuels and transitioning to renewable resources, it could serve as a turning point. As other world leaders see that switching to sustainable energy is possible – and profitable – it could be the start of a worldwide shift towards environmentally-friendly energy.

Sources: https://www.bloomberg.com/news/articles/2017-11-06/green-dream-risks-energy-security-as-kiwis-aim-for-zero-carbon

https://www.reuters.com/article/us-france-hydrocarbons/france-plans-to-end-oil-and-gas-production-by-2040-idUSKCN1BH1AQ

Continue Reading

Energy

5 Easy Things You Can Do to Make Your Home More Sustainable

Published

on

By

sustainable homes
Shutterstock Licensed Photot - By Diyana Dimitrova

Increasing your home’s energy efficiency is one of the smartest moves you can make as a homeowner. It will lower your bills, increase the resale value of your property, and help minimize our planet’s fast-approaching climate crisis. While major home retrofits can seem daunting, there are plenty of quick and cost-effective ways to start reducing your carbon footprint today. Here are five easy projects to make your home more sustainable.

1. Weather stripping

If you’re looking to make your home more energy efficient, an energy audit is a highly recommended first step. This will reveal where your home is lacking in regards to sustainability suggests the best plan of attack.

Some form of weather stripping is nearly always advised because it is so easy and inexpensive yet can yield such transformative results. The audit will provide information about air leaks which you can couple with your own knowledge of your home’s ventilation needs to develop a strategic plan.

Make sure you choose the appropriate type of weather stripping for each location in your home. Areas that receive a lot of wear and tear, like popular doorways, are best served by slightly more expensive vinyl or metal options. Immobile cracks or infrequently opened windows can be treated with inexpensive foams or caulking. Depending on the age and quality of your home, the resulting energy savings can be as much as 20 percent.

2. Programmable thermostats

Programmable thermostats

Shutterstock Licensed Photo – By Olivier Le Moal

Programmable thermostats have tremendous potential to save money and minimize unnecessary energy usage. About 45 percent of a home’s energy is earmarked for heating and cooling needs with a large fraction of that wasted on unoccupied spaces. Programmable thermostats can automatically lower the heat overnight or shut off the air conditioning when you go to work.

Every degree Fahrenheit you lower the thermostat equates to 1 percent less energy use, which amounts to considerable savings over the course of a year. When used correctly, programmable thermostats reduce heating and cooling bills by 10 to 30 percent. Of course, the same result can be achieved by manually adjusting your thermostats to coincide with your activities, just make sure you remember to do it!

3. Low-flow water hardware

With the current focus on carbon emissions and climate change, we typically equate environmental stability to lower energy use, but fresh water shortage is an equal threat. Installing low-flow hardware for toilets and showers, particularly in drought prone areas, is an inexpensive and easy way to cut water consumption by 50 percent and save as much as $145 per year.

Older toilets use up to 6 gallons of water per flush, the equivalent of an astounding 20.1 gallons per person each day. This makes them the biggest consumer of indoor water. New low-flow toilets are standardized at 1.6 gallons per flush and can save more than 20,000 gallons a year in a 4-member household.

Similarly, low-flow shower heads can decrease water consumption by 40 percent or more while also lowering water heating bills and reducing CO2 emissions. Unlike early versions, new low-flow models are equipped with excellent pressure technology so your shower will be no less satisfying.

4. Energy efficient light bulbs

An average household dedicates about 5 percent of its energy use to lighting, but this value is dropping thanks to new lighting technology. Incandescent bulbs are quickly becoming a thing of the past. These inefficient light sources give off 90 percent of their energy as heat which is not only impractical from a lighting standpoint, but also raises energy bills even further during hot weather.

New LED and compact fluorescent options are far more efficient and longer lasting. Though the upfront costs are higher, the long term environmental and financial benefits are well worth it. Energy efficient light bulbs use as much as 80 percent less energy than traditional incandescent and last 3 to 25 times longer producing savings of about $6 per year per bulb.

5. Installing solar panels

Adding solar panels may not be the easiest, or least expensive, sustainability upgrade for your home, but it will certainly have the greatest impact on both your energy bills and your environmental footprint. Installing solar panels can run about $15,000 – $20,000 upfront, though a number of government incentives are bringing these numbers down. Alternatively, panels can also be leased for a much lower initial investment.

Once operational, a solar system saves about $600 per year over the course of its 25 to 30-year lifespan, and this figure will grow as energy prices rise. Solar installations require little to no maintenance and increase the value of your home.

From an environmental standpoint, the average five-kilowatt residential system can reduce household CO2 emissions by 15,000 pounds every year. Using your solar system to power an electric vehicle is the ultimate sustainable solution serving to reduce total CO2 emissions by as much as 70%!

These days, being environmentally responsible is the hallmark of a good global citizen and it need not require major sacrifices in regards to your lifestyle or your wallet. In fact, increasing your home’s sustainability is apt to make your residence more livable and save you money in the long run. The five projects listed here are just a few of the easy ways to reduce both your environmental footprint and your energy bills. So, give one or more of them a try; with a small budget and a little know-how, there is no reason you can’t start today.

Continue Reading
Advertisement

Facebook

Trending