Connect with us

Energy

Fusion energy: closer than ever before

Published

on

Dr David Kingham

Dr David Kingham, CEO, Tokamak Energy

Nuclear fusion is the creative process of the universe. All matter, besides hydrogen and a smattering of helium, was created in the fusion furnaces within stars as small atomic nuclei joined together to make larger ones. This reaction releases huge amounts of energy – about ten million times as much by weight as the chemical reaction of fossils fuels, and all without any harmful byproducts. One can see why it is hailed as the energy of the future, the power source that will right the wrongs of a fossil fuel-reliant past and present. But it is not easy to achieve.

The established principle for this reaction on Earth is to combine deuterium and tritium, two isotopes of hydrogen, to make helium and a neutron. In order to do this, fusion reactors must recreate the conditions found in stars, where fusion naturally occurs. This means creating temperatures of 100m degrees to create a super hot ‘plasma’ within which the isotopes come together. The neutron generated by this reaction is not confined by a fusion reactor and so flies out of the vessel; capturing the energy of the neutron is what generates electricity.

The scientific and engineering problems behind putting a star within a box are big, to say the least. Without proper confinement of the plasma, the reactor walls would get hot and the fusion fuel would get cold; the reaction would stop. The hot plasma must be isolated from the walls of the reactor. This feat can be performed using magnets and the most advanced machine used for this purpose is the ‘tokamak’.

The best-performing tokamak in the world is JET, producing 16MW of fusion power with 24MW input in 1997 – ie 65% as much energy out as was put in. It holds the world record for total fusion power produced and for getting closest to breakeven, the point where you get as much energy out as you put in. For JET to achieve this, fusion research had followed a Moore’s law-like path.  The temperature, density and energy confinement time, which indicates fusion performance, was increasing at a faster and faster rate up until the JET experiments.

But since then it seems that progress has stalled. There have still been experiments built and much learned, but progress towards energy breakeven has slowed. We still haven’t actually reached energy breakeven almost 20 years after we nearly got there.

Traditional designs have moved to larger dimensions, culminating in the ITER experiment currently under construction in the south of France. This will be over 30m tall and weigh about 23,000 tonnes. The demonstration reactor that follows, dubbed DEMO, will likely be slightly bigger again. When ITER was being designed in the 1990s, it was believed that the only feasible way to increase fusion power was to increase machine size.  But the size and complexity of ITER has led to very slow progress, with first fusion set for the mid 2020s.

Tired of waiting so long and recognising the inherent difficulties of such a big project, the possibility of a smaller way to fusion has grabbed the imagination of inventors, innovators and now investors.

As patience with progress has begun to run out there is a new climate of private funding reaching into areas previously the domain of governments. Ventures like Virgin Galactic and SpaceX, or The Breakthrough Energy Coalition led by Bill Gates and Mark Zuckerberg; these large investments in new technologies and promising areas of scientific research are becoming more common. As Lord Rees of Ludlow, past President of the Royal Society, put it in 2015, “the private sector now has greater appetite for risk in scientific projects than Western governments.”

The fusion industry has benefitted hugely from this surge in funding. Jeff Bezos, founder of Amazon, and Peter Thiel, co-founder of PayPal, have invested many tens of millions into private fusion ventures in the US and Tokamak Energy is seeing the same in the UK, receiving over $15 million so far from private and public investors. This has allowed the complex science and engineering needed for fusion to be developed faster than it has for years.

For Tokamak Energy this investment has allowed it to extend the lead that tokamaks already have in the race to fusion. With research beginning in the mid 20th century, a lot is known about how they hold plasma in a spherical reactor with magnetism. Tokamak Energy has added to this, publishing two papers that show for the first time that size is not an important factor in fusion reactors and proving that a compact reactor can produce an energy gain; a game changer when you consider the grand scale that other fusion projects are pursuing.  Proving this has helped Tokamak Energy to turn the pursuit of fusion energy into a series of engineering challenges.

Thanks to funds raised, Tokamak Energy has been tackling these challenges head on with a five-stage, five-reactor plan. Its second device showed it was possible to make new high temperature superconducting magnets for controlling the plasma.  These are made of a material with much increased conductivity in high magnetic fields than materials typically used for magnets in fusion reactors.  The higher conductivity and higher operating temperature will allow fusion power to be produced in much more compact devices than conventionally thought possible.

By breaking down the challenges into such distinct goals, money can be raised privately to achieve each step, with success enabling more money to be raised to tackle the next challenge. Tokamak Energy aims to deliver a fusion power gain within 5 years, first electricity within 10 years and a 100 MWe power plant within 15 years, but acknowledges that this will depend on attracting a huge amount of investment.

There is latent public enthusiasm; many people recognise that harnessing fusion energy is an important challenge that we have a duty to tackle. The new investment climate brings hope for this fusion future. While some hold the view that fusion will forever be 30 years beyond the horizon, Tokamak Energy is working on making it a reality.

 

Energy

Are the UK Governments Plans for the Energy Sector Smart?

Published

on

The revolution in the energy sector marches on, wind turbines and solar panels are harnessing more renewable energy than ever before – so where is it all leading?

The UK government have recently announced plans to modernise the way we produce, store and use electricity. And, if realised, the plans could be just the thing to bring the energy sector in line with 21st century technology and ideologies.

Central to the plans is an initiative that will see smart meters installed in homes and businesses the length and breadth of the country – and their aim? To create an environment where electricity can be managed more efficiently.

The news has prompted some speculation about how energy suppliers will react and many are predicting a price war. This could benefit consumers of electricity and investors, many of whom may be looking to make a profit by trading energy company shares online using platforms such as Oanda – but the potential for good news doesn’t end there.

Introducing New Technology

The plan, titled Smart Systems and Flexibility is being rolled out in the hope that it will have a positive impact in three core areas.

  • To offer consumers greater control by making smart meters available for all homes and businesses by 2020. Energy users will be able to monitor, control and record the amount of energy they use.
  • Incentivise energy suppliers to change the manner in which they buy electricity, to offer more smart tariffs and more off-peak periods for energy consumption.
  • Introduce new standards for electrical appliances – it is hoped that the new wave of appliances will recognise when electricity is at its cheapest and at its most expensive and respond accordingly.

How the Plans Will Affect Solar Energy

Around 7 million houses in the UK have solar panels and the government say that their plan will benefit them as they will be able to store electricity on batteries. The stored energy can then be used by the household and excess energy can be exported to the national grid – in this instance lower tariffs or even payment for the excess energy will bring down annual costs significantly.

The rate of return on energy exported to the national grid is currently between 6% and 10%, but there are many variables to take into account, such as, the cost of battery storage and light levels. Still, those with state-of-the-art solar electricity systems could end up with an annual profit after selling their excess energy.

The Internet of Things

Much of what the plans set out to achieve are linked to the now ubiquitous “internet of things” – where, for example, appliances and heating systems are connected to the internet in order to make them function more smartly.

Companies like Hive have already made great inroads into this type of technology, but the road that the government plans are heading down, will, potentially, go much further -blockchain technology looms and has already proved to be a game changer in the world of currency.

Blockchain Technology

It has already been suggested that the peer to peer selling of energy and exporting it to the national grid may eventually be done using blockchain technology.

“The blockchain is an incorruptible digital ledger of economic transactions that can be programmed to record not just financial transactions but virtually everything of value.”

Don and Alex Tapscott, Blockchain Revolution (2016)

The upshot of the government’s plans for the revolution of the energy sector, is that technology will play an indelible role in making it more efficient, more flexible and ultimately more sustainable.

Continue Reading

Energy

4 Case Studies on the Benefits of Solar Energy

Published

on

By

Demand for solar energy is growing at a surprising rate. New figures from SolarPower Europe show that solar energy production has risen 50% since the summer of 2016.

However, many people are still skeptical of the benefits of solar energy.Does it actually make a significant reduction in our carbon footprint? Is it actually cost-effective for the company over the long-run?

A number of case studies have been conducted, which indicate solar energy can be enormously beneficial. Here are some of the most compelling studies on the subject.

1.     Boulder Nissan

When you think of companies that leverage solar power, car dealerships probably aren’t the first ones that come to mind. However, Boulder Nissan is highly committed to promoting green energy. They worked with Independent Power Systems to setup a number of solar cells. Here were the results:

  • Boulder Nissan has reduced coal generated electricity by 65%.
  • They are on track to run on 100% renewable energy within the next 13 years.
  • Boulder Nissan reduced CO2 emissions by 416,000 lbs. within the first year after installing their solar panels.

This is one of the most impressive solar energy case studies a small business has published in recent years. It shows that even small companies in rural communities can make a major difference by adapting solar energy.

2.     Valley Electric Association

In 2015, the Valley Electric Association (VEA) created an 80-acre solar garden. Before retiring from the legislature, U.S. Senate Minority Leader Harry Reid praised the new project as a way to make the state more energy dependent and reduce our carbon footprint.

“This facility will provide its customers with the opportunity to purchase 100 percent of their electricity from clean energy produced in Nevada,” Reid told reporters with the Pahrump Valley Times. “That’s a step forward for the Silver State, but it also proves that utilities can work with customers to provide clean renewable energy that they demand.”

The solar energy that VEA produced was drastically higher than anyone would have predicted. SolarWorld estimates that the solar garden created 32,680,000 kwh every year, which was enough to power nearly 4,000 homes.

This was a major undertaking for a purple state, which may inspire their peers throughout the Midwest to develop solar gardens of their own. It will reduce dependency on the electric grid, which is a problem for many remote states in the central part of the country.

3.     Las Vegas Casinos

A number of Las Vegas casinos have started investing in solar panels over the last couple of years. The Guardian reports that many of these casinos have cut costs considerably. Some of them are even selling the energy back to the grid.

“It’s no accident that we put the array on top of a conference center. This is good business for us,” Cindy Ortega, chief sustainability officer at MGM Resorts told Guardian reporters. “We are looking at leaving the power system, and one of the reasons for that is we can procure more renewable energy on the open market.”

There have been many benefits for casinos using solar energy. They are some of the most energy-intensive institutions in the world, so this has helped them become much more cost-effective. It also helps minimize disruptions to their customers learning online keno strategies in the event of any problems with the electric grid.

4.     Boston College

Boston College has been committed to many green initiatives over the years. A group of researchers experimented with solar cells on different parts of the campus to see where they could produce the most electricity. They discovered that the best locationwas at St. Clement’sHall. The solar cells there dramatically. It would also reduce CO2 emissions by 521,702 lbs. a year and be enough to save 10,869 trees.

Boston College is exploring new ways to expand their usage of solar cells. They may be able to invest in more effective solar panels that can generate far more solar energy.

Continue Reading
Advertisement

Facebook

Trending