Connect with us


Your home can be powered by solar around the clock



Solarcentury logo

Storage powers the night with light

In the midst of Brexit and Pokemania, it’s easy to overlook a shift taking place in global energy networks that has far reaching benefits for us all. Solar can now economically provide the majority of a homeowners’ electricity demand thanks to improvements in the performance, lifetime and cost; lithium batteries are 90% cheaper than they were in 1990 and can last longer than 10 years. Welcome to the store-age!

Storage technology has developed so much that in 2015, over a third (41%) of all solar systems installed by German homeowners were tied with battery storage. As noted by analysts at Greentech Media “The future of Germany’s energy storage market is bright, and the solar market will surely benefit as storage prices decline.” The UK will follow Germany’s lead.

Storage cuts the electricity bill

Solar with storage can dramatically reduce a homeowner’s dependence on their supplier for their electricity. We all know that solar panels on your roof generate clean energy; however until recently there has not been a way to guarantee that homeowners can use that energy. A range of new storage devices mean this is no longer the case – a storage device in the home makes the clean energy available whenever you need it- no more timing the washing machine to run during daylight hours.

Most importantly for homeowners, storage means they can consume more of the solar energy generated by their panels. The experience of the UK’s first Tesla Powerwall customer illustrates this well.

After installing the much-hyped battery, the homeowner used a whopping 80% of the electricity generated by the panels on their roof during the last week of April 2016. Previously, the same family – who are not usually at home in the day so demand most electricity in the evening and on weekends – used around 20% of all the solar electricity their panels generated . (This varies from one home to the next depending on a variety of factors such as the size of the storage device).

This diagram shows the sweet spot of the perfect solar and storage marriage. Combining solar and storage reduces the amount of electricity required from a supply company, which translates to hefty savings



So why is a storage revolution happening now? There are two main reasons: solar and storage prices have hit a tipping point and storage device lifetimes are much longer, so they don’t need replacing as often. Your mobile phone battery might be good for 2 years. The latest good quality lithium batteries for use with solar panels are now warrantied for 10 years.

It’s widely known that the cost of solar PV has fallen dramatically. In fact, earlier this year Oxford University researchers asserted that costs are dropping so fast that solar will continue to decline at 10% per year. This means an average sized 3kWp system costs as little as £5000.

Storage prices have also plummeted by 90% since 1990, and consequently there are now a plethora of new storage devices to choose from. Since the launch of Tesla’s Powerwall last year, a range of storage devices for homes have hit the market from companies like LG, Enphase, Sonnen, SunAmp and Powervault. Consumers have choice, and professional installers select the right product for each householders needs.

Tesla is also not the only vehicle manufacturer in the market to launch a battery device for homeowners; Mercedes, BMW and Nissan are launching batteries for the home which can be charged during the day by solar panels on the roof, ready to offload to an electric vehicle in the evening. With this choice, it’s getting easier for homeowners to find a device that’s right for them.

What’s right for your home?

You could consider:

• What’s my budget?

• If I look at when I use electricity, could I use more of the solar power from my solar roof system if I get an energy storage device?

• How important is it for me to become energy independent i.e. less reliant on my electricity supplier?

Storage in 2016

Analysts IHS predict that the global energy storage market will double this year as homes, businesses and utilities adopt energy storage. “Energy storage is set to grow as fast as solar photovoltaic energy has in recent years,” according to Marianne Boust, an IHS principal analyst.

If these predictions ring true, you could find yourself shopping for a storage system much sooner than you thought.


By Dr Andrew Crossland and Sarah Allison at Solarcentury



Are the UK Governments Plans for the Energy Sector Smart?



The revolution in the energy sector marches on, wind turbines and solar panels are harnessing more renewable energy than ever before – so where is it all leading?

The UK government have recently announced plans to modernise the way we produce, store and use electricity. And, if realised, the plans could be just the thing to bring the energy sector in line with 21st century technology and ideologies.

Central to the plans is an initiative that will see smart meters installed in homes and businesses the length and breadth of the country – and their aim? To create an environment where electricity can be managed more efficiently.

The news has prompted some speculation about how energy suppliers will react and many are predicting a price war. This could benefit consumers of electricity and investors, many of whom may be looking to make a profit by trading energy company shares online using platforms such as Oanda – but the potential for good news doesn’t end there.

Introducing New Technology

The plan, titled Smart Systems and Flexibility is being rolled out in the hope that it will have a positive impact in three core areas.

  • To offer consumers greater control by making smart meters available for all homes and businesses by 2020. Energy users will be able to monitor, control and record the amount of energy they use.
  • Incentivise energy suppliers to change the manner in which they buy electricity, to offer more smart tariffs and more off-peak periods for energy consumption.
  • Introduce new standards for electrical appliances – it is hoped that the new wave of appliances will recognise when electricity is at its cheapest and at its most expensive and respond accordingly.

How the Plans Will Affect Solar Energy

Around 7 million houses in the UK have solar panels and the government say that their plan will benefit them as they will be able to store electricity on batteries. The stored energy can then be used by the household and excess energy can be exported to the national grid – in this instance lower tariffs or even payment for the excess energy will bring down annual costs significantly.

The rate of return on energy exported to the national grid is currently between 6% and 10%, but there are many variables to take into account, such as, the cost of battery storage and light levels. Still, those with state-of-the-art solar electricity systems could end up with an annual profit after selling their excess energy.

The Internet of Things

Much of what the plans set out to achieve are linked to the now ubiquitous “internet of things” – where, for example, appliances and heating systems are connected to the internet in order to make them function more smartly.

Companies like Hive have already made great inroads into this type of technology, but the road that the government plans are heading down, will, potentially, go much further -blockchain technology looms and has already proved to be a game changer in the world of currency.

Blockchain Technology

It has already been suggested that the peer to peer selling of energy and exporting it to the national grid may eventually be done using blockchain technology.

“The blockchain is an incorruptible digital ledger of economic transactions that can be programmed to record not just financial transactions but virtually everything of value.”

Don and Alex Tapscott, Blockchain Revolution (2016)

The upshot of the government’s plans for the revolution of the energy sector, is that technology will play an indelible role in making it more efficient, more flexible and ultimately more sustainable.

Continue Reading


4 Case Studies on the Benefits of Solar Energy




Demand for solar energy is growing at a surprising rate. New figures from SolarPower Europe show that solar energy production has risen 50% since the summer of 2016.

However, many people are still skeptical of the benefits of solar energy.Does it actually make a significant reduction in our carbon footprint? Is it actually cost-effective for the company over the long-run?

A number of case studies have been conducted, which indicate solar energy can be enormously beneficial. Here are some of the most compelling studies on the subject.

1.     Boulder Nissan

When you think of companies that leverage solar power, car dealerships probably aren’t the first ones that come to mind. However, Boulder Nissan is highly committed to promoting green energy. They worked with Independent Power Systems to setup a number of solar cells. Here were the results:

  • Boulder Nissan has reduced coal generated electricity by 65%.
  • They are on track to run on 100% renewable energy within the next 13 years.
  • Boulder Nissan reduced CO2 emissions by 416,000 lbs. within the first year after installing their solar panels.

This is one of the most impressive solar energy case studies a small business has published in recent years. It shows that even small companies in rural communities can make a major difference by adapting solar energy.

2.     Valley Electric Association

In 2015, the Valley Electric Association (VEA) created an 80-acre solar garden. Before retiring from the legislature, U.S. Senate Minority Leader Harry Reid praised the new project as a way to make the state more energy dependent and reduce our carbon footprint.

“This facility will provide its customers with the opportunity to purchase 100 percent of their electricity from clean energy produced in Nevada,” Reid told reporters with the Pahrump Valley Times. “That’s a step forward for the Silver State, but it also proves that utilities can work with customers to provide clean renewable energy that they demand.”

The solar energy that VEA produced was drastically higher than anyone would have predicted. SolarWorld estimates that the solar garden created 32,680,000 kwh every year, which was enough to power nearly 4,000 homes.

This was a major undertaking for a purple state, which may inspire their peers throughout the Midwest to develop solar gardens of their own. It will reduce dependency on the electric grid, which is a problem for many remote states in the central part of the country.

3.     Las Vegas Casinos

A number of Las Vegas casinos have started investing in solar panels over the last couple of years. The Guardian reports that many of these casinos have cut costs considerably. Some of them are even selling the energy back to the grid.

“It’s no accident that we put the array on top of a conference center. This is good business for us,” Cindy Ortega, chief sustainability officer at MGM Resorts told Guardian reporters. “We are looking at leaving the power system, and one of the reasons for that is we can procure more renewable energy on the open market.”

There have been many benefits for casinos using solar energy. They are some of the most energy-intensive institutions in the world, so this has helped them become much more cost-effective. It also helps minimize disruptions to their customers learning online keno strategies in the event of any problems with the electric grid.

4.     Boston College

Boston College has been committed to many green initiatives over the years. A group of researchers experimented with solar cells on different parts of the campus to see where they could produce the most electricity. They discovered that the best locationwas at St. Clement’sHall. The solar cells there dramatically. It would also reduce CO2 emissions by 521,702 lbs. a year and be enough to save 10,869 trees.

Boston College is exploring new ways to expand their usage of solar cells. They may be able to invest in more effective solar panels that can generate far more solar energy.

Continue Reading