Connect with us

Energy

3D four star fund Foresight Solar Fund: the 3D Investing perspective

Published

on

During Good Money Week 2015 Blue & Green Tomorrow launched 3D Investing’s 5-Star rating system which allows advisers and investors to pick out the best of the best from the socially responsible investment universe. To find out more read the B&GT Guide to Sustainable Investment or visit 3Dinvesting.com. Today we take a look at Foresight Solar Fund.

This fund invests in large ground mounted Solar Assets in the UK, the majority of which are in the South of England.   Approximately 59% of the Company’s initial annual revenues are derived from green benefits such as Renewable Obligation Certificates, and these underpin an initial target yield of 6%.   Foresight has considerable experience in investing in solar infrastructure, through its VCTs, which have proved to be successful in generating the predicted dividend streams. Foresight has a dedicated Infrastructure team of 35 who have acquired over 65 solar PV assets globally equating to an installed capacity of over 650MW. The four star rating reflects the pure focus on the generation of solar energy and the transparent reporting.

Investment Strategy & Fund Composition

The Company seeks to provide investors with a sustainable and Retail Price Index (“RPI”) linked dividend together with the potential for capital growth over the long-term through investment in a diversified portfolio of UK ground based solar assets.

Investments outside the UK, and assets which are still under construction when acquired, will be limited to 25 per cent of the gross asset value of the Company, calculated at the time of investment.  The Company’s portfolio of 16 assets is fully operational.

Foresight Group have deliberately set out to execute a low risk strategy of avoiding construction and subsidy risk and have negotiated these terms accordingly with large and experienced contractors. This avoids unnecessary risk exposure for shareholders. In keeping with this strategy, 15 of the 16 assets within the portfolio were operational when acquired and subject to certain conditions having been achieved by the developer of the plant, including the assets being built to a specified performance standard and their successful connection to the Grid. Although construction risk can be managed depending on the balance sheet strength of the construction contractor, more difficult to manage is the risk of failing to meet the subsidy deadlines. The Company saw this as a particular risk ahead of the 31 March 2015 ROC deadline, which was a cliff edge deadline given the acceleration of the Contracts for Difference (“CfD”) mechanism for projects greater than 5MW after this date.

On 25 June 2015, the Company announced that it had signed a binding contract to acquire its first construction asset, the 30MW Copley asset in Nottinghamshire.  The Company believed that the enhanced returns from providing construction funding for Copley asset was justified given that the construction and connection timetable was significantly shorter than the “Grace Period” deadline of 31 March 2016. In November 2015, the Company confirmed that the construction of the asset had successfully completed and the asset had connected to the Grid.

Ethical Approach & Suitability

The investment company purely invests in solar PV power plants.

Suitable for most investors.

Social Impact

The portfolio is wholly invested in solar power plants, with a net generating capacity of 338 MW

SRI Capability & Management

There are no ethical criteria and no SRI research is conducted on the portfolio, but the current portfolio is totally invested in UK solar plants.

Risk Management

The fund is underpinned by predictable, index linked revenue streams and as such carries modest levels of risk.  There is a risk of retrospective Government policy changes that could very materially affect the share price, but this seems unlikely.  59% of the initial income is derived from Renewable Obligation Certificates, underpinning the target dividend levels.  The Company is able to gear the fund up to a level of 50% but the managers do not intend to borrow more than 40% of the gross asset value.  40% of the portfolio income is related to fixed price Power Purchase Agreements.  A discount rate of 7.5% is applied to future cash flows which is consistent with the sector.  The dividend is covered by a factor of 1.4.

Transparency

Full information is provided on each holding as shown in the example below.

Full profiles are provided on each holding

Financial Performance & Management

Foresight Group has proven expertise and now manages over £1 billion across nine solar funds.  This experience has enabled the company to source investments and to effectively manage the projects within tight timescales.  In total Foresight Group manages c. £1.6 billion, making it a substantial investor in infrastructural assets.

At IPO, the Fund targeted a 6 pence dividend which it achieved for its first full financial period ended 31 December 2014. The Company is now on track to deliver its first RPI linked dividend of 6.10 pence (6 pence inflated by RPI for 2014) for the period ended 31 December 2015.

A short-term acquisition facility of £150 million is currently in place and is being utilised to extend the gross asset value of the portfolio to around £435 million.   The current level of debt drawn down is around 24% of the gross asset value of the fund on which interest accrues at up to 2.25% over LIBOR.  Although the current portfolio is 100% invested in the UK, the Company can invest up to 25% outside Britain.

Thus far, operational performance has been ahead of expectations.

In accordance with the Financial Services and Markets Act 2000, Blue and Green Communications Limited does not provide regulated investment services of any kind, and is not authorised to do so. Nothing in this magazine and all parts herein constitutes or should be deemed to constitute advice, recommendation, invitation or inducement to buy, sell, subscribe for or underwrite any investment of any kind. Any specific investment-related queries or concerns should be directed to a fully qualified financial adviser.

Energy

What Should We Make of The Clean Growth Strategy?

Published

on

Clean Growth Strategy for green energy
Shutterstock Licensed Photo - By sdecoret | https://www.shutterstock.com/g/sdecoret

It was hardly surprising the Clean Growth Strategy (CGS) was much anticipated by industry and environmentalists. After all, its publication was pushed back a couple of times. But with the document now in the public domain, and the Government having run a consultation on its content, what ultimately should we make of what’s perhaps one of the most important publications to come out of the Department for Business, Energy and the Industrial Strategy (BEIS) in the past 12 months?

The starting point, inevitably, is to decide what the document is and isn’t. It is, certainly, a lengthy and considered direction-setter – not just for the Government, but for business and industry, and indeed for consumers. While much of the content was favourably received in terms of highlighting ways to ensure clean growth, critics – not unjustifiably – suggested it was long on pages but short on detailed and finite policy commitments, accompanied by clear timeframes for action.

A Strategy, Instead of a Plan

But should we really be surprised? The answer, in all honesty, is probably not really. BEIS ministers had made no secret of the fact they would be publishing a ‘strategy’ as opposed to a ‘plan,’ and that gave every indication the CGS would set a direction of travel and be largely aspirational. The Government had consulted on its content, and will likely respond to the consultation during the course of 2018. And that’s when we might see more defined policy commitments and timeframes from action.

The second criticism one might level at the CGS is that indicated the use of ‘flexibilities’ to achieve targets set in the carbon budgets – essentially using past results to offset more recent failings to keep pace with emissions targets. Claire Perry has since appeared in front of the BEIS Select Committee and insisted she would be personally disappointed if the UK used flexibilities to fill the shortfall in meeting the fourth and fifth carbon budgets, but this is difficult ground for the Government. The Committee on Climate Change was critical of the proposed use of efficiencies, which would somewhat undermine ministers’ good intentions and commitment to clean growth – particularly set against November’s Budget, in which the Chancellor maintained the current carbon price floor (potentially giving a reprieve to coal) and introduced tax changes favourable to North Sea oil producers.

A 12 Month Green Energy Initiative with Real Teeth

But, there is much to appreciate and commend about the CGS. It fits into a 12-month narrative for BEIS ministers, in which they have clearly shown a commitment to clean growth, improving energy efficiency and cutting carbon emissions. Those 12 months have seen the launch of the Industrial Strategy – firstly in Green Paper form, which led to the launch of the Faraday Challenge, and then a White Paper in which clean growth was considered a ‘grand challenge’ for government. Throughout these publications – and indeed again with the CGS – the Government has shown itself to be an advocate of smart systems and demand response, including the development of battery technology.

Electrical Storage Development at Center of Broader Green Energy Push

While the Faraday Challenge is primarily focused on the development of batteries to support the proliferation of electric vehicles (which will support cuts to carbon emissions), it will also drive down technology costs, supporting the deployment of small and utility-scale storage that will fully harness the capability of renewables. Solar and wind made record contributions to UK electricity generation in 2017, and the development of storage capacity will help both reduce consumer costs and support decarbonisation.

The other thing the CGS showed us it that the Government is happy to be a disrupter in the energy market. The headline from the publication was the plans for legislation to empower Ofgem to cap the costs of Standard Variable Tariffs. This had been an aspiration of ministers for months, and there’s little doubt that driving down costs for consumers will be a trend within BEIS policy throughout 2018.

But the Government also seems happy to support disruption in the renewables market, as evidenced by the commitment (in the CGS) to more than half a billion pounds of investment in Pot 2 of Contracts for Difference (CfDs) – where the focus will be on emerging rather than established technologies.

This inevitably prompted ire from some within the industry, particularly proponents of solar, which is making an increasing contribution to the UK’s energy mix. But, again, we shouldn’t really be surprised. Since the subsidy cuts of 2015, ministers have given no indication or cause to think there will be public money afforded to solar development. Including solar within the CfD auction would have been a seismic shift in policy. And while ministers’ insistence in subsidy-free solar as the way forward has been shown to be based on a single project, we should expect that as costs continue to be driven down and solar makes record contributions to electricity generation, investment will follow – and there will ultimately be more subsidy-free solar farms, albeit perhaps not in 2018.

Meanwhile, by promoting emerging technologies like remote island wind, the Government appears to be favouring diversification and that it has a range of resources available to meet consumer demand. Perhaps more prescient than the decision to exclude established renewables from the CfD auction is the subsequent confirmation in the budget that Pot 2 of CfDs will be the last commitment of public money to renewable energy before 2025.

In short, we should view the CGS as a step in the right direction, albeit one the Government should be elaborating on in its consultation response. Its publication, coupled with the advancement this year of the Industrial Strategy indicates ministers are committed to the clean growth agenda. The question is now how the aspirations set out in the CGS – including the development of demand response capacity for the grid, and improving the energy efficiency of commercial and residential premises – will be realised.

It’s a step in the right direction. But, inevitably, there’s much more work to do.

Continue Reading

Energy

How Much Energy Does Bitcoin Use, Really?

Published

on

how much energy bitcoin requires
Shutterstock Licensed Photo - By Chinnapong | https://www.shutterstock.com/g/noipornpan

Many headlines have capitalized on the rapid rise of Bitcoin’s value. However, there’s a darker side of things that may entirely escape people’s awareness — the vast energy usage associated with Bitcoin mining. The practice involves adding information about transactions to a publicly accessible record called the blockchain.

Bitcoin miners increase the amounts of the cryptocurrency they own by being involved in mining. That means there is a built-in incentive to start mining and keep doing it. The energy consumption associated with mining may not be as visible as it is in traditional types of mining because everything happens in the digital realm — however, it’s exceptionally high, which is a cause of concern to many individuals in the know.

The Rise in Value Brings About Higher Energy Consumption

It’s not hard to find impressive headlines and news stories about how the value of Bitcoin has soared over the last few months. Many people even suspect they’ll soon witness the inevitable burst of a “Bitcoin bubble.” Miners are taking advantage of the current boom, though, which involves depending on power-sapping computers and related equipment.

In the early days of Bitcoin, it was possible to mine on basic home computer setups. Now, the most dedicated miners invest in the best computers around. In some cases, that means the machines they use are quite energy efficient, which is a good thing. However, the purchase of equipment that uses electricity well isn’t enough to make a significant dent in the overall Bitcoin energy usage.

The Approximate Energy Usage Statistics Vary

When you start doing in-depth research about just how much energy consumption Bitcoin demands, be prepared to come across many different figures. Although people are doing diligent research, they still can’t reach an agreement. For example, according to statistics from the Bitcoin Energy Consumption Index, the annual energy usage is just under 32 terawatt hours.

That’s the estimate for per-year energy use of Serbia and more than 150 other countries. However, analysts find it impossible to reach a unified conclusion about the per-transaction energy consumption for Bitcoins.

Figures from Digiconomist estimate one Bitcoin transaction takes 255 kilowatt-hours of power — or enough to power an American household for more than eight days. Marc Bevand, another analyst, disagrees with that figure, though his remarks on the matter are not as specific. He discusses how many of the highly publicized statistics fail to account for the technological innovations that occur as equipment improves.

He gives the example of an S9, which is a standard piece of Bitcoin equipment, claiming 16% of the S9’s revenues went towards electricity costs. If that figure is more accurate, it would mean each Bitcoin transaction uses enough power to keep an American residence going for just under four days.

Bitcoin Miners May Be Able to Branch Out From Cryptocurrency

Some Bitcoin miners are attracted to their trade for more reasons than just the lucrative and ballooning prices of the coins. People from a wide variety of industries, from banking to insurance, are looking at uses for blockchain technology. In the insurance sector, fraud costs $40 billion per year, but the verification method that miners understand and work with dramatically reduces fraud and makes blockchain appealing to insurance professionals.

Also, banks are increasingly researching Blockchain as a supplement to their current methods. As the prominence in the market goes up, the allure of being a Bitcoin miner does, too.

Also, going back to Bitcoin specifically, as the value of each coin goes up, people become more motivated than ever to invest in better technologies that help them remain profitable for as long as possible. When all these factors combine, it’s not hard to understand why energy consumption rises.

Do Banks Use More Energy Than Bitcoins?

Some analysts argue that even if the energy demanded by Bitcoins is exceptionally high, it’s still not at the level of energy used by banks. To keep things in perspective, it’s important to realize that the banking industry keeps its total energy usage figures under wraps, leaving people to do lots of speculating.

One analyst determined there are approximately 30,000 banks in the world, and each one has ATM networks, offices and other components that require electricity. When adding all the relevant factors together, the final figure this individual came up with is that banks use about 100 terawatts of power per year, less than the earlier-cited figure related to Bitcoins.

However, people have given opinions that the amount is too conservative. It does not include the energy used by bank employees, such as when employees drive to their offices or fly to meet clients. It bears mentioning, though, that the Bitcoin figures mentioned in this piece probably don’t either.

There are countless statistics about Bitcoin energy usage, and most of them are not promising. But instead of reading a few of them and immediately feeling shocked, it’s important for people to take a broad look at the findings and reach their own intelligent conclusions based on the collective research.

Continue Reading
Advertisement

Facebook

Trending